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Various methods for simulating materials and minerals at an atomic level are reviewed, 
including lattice energy relaxation, lattice dynamics, molecular dynamics and Monte 
Carlo methods, and including also the use of empirical interatomic potentials and ab-
initio quantum mechanical methods. A small number of diverse applications are 
described. Approaches to job and data management are also discussed. 

 

 

1. Introduction 

Over the past two decades or more all sciences have seen an explosion of the use of 
computer simulations to the point where computational methods are now stand 
alongside theoretical and experimental methods in value. The birth of the use of 
computer simulations was actually around five decades ago, but their impact in modern 
science has exactly mirrored the exponential growth in the power of computers and the 
use of computers across the whole of science (e.g. for instrument control). In turn, the 
growing power of computers has spurred the development of methods and code 
interfaces, widening the potential of simulations to tackle a wide range of scientific 
issues and placing tools in the hands of a wider group of scientists. Let me illustrate this 
with a simple example. 15 years ago using a computer system that cost the equivalent of 
20 desktop computers in modern equivalent terms I could calculate the energy-relaxed 
structure of cordierite (Mg2Al4Si5O18) in around 3 hours. The same calculation on my 
desktop has just taken me 1.5 s. A study of energy modelling of leucite (KAlSi2O6) 
(Dove et al., 1993) from 15 years ago that involved computing the energy a number of 
different configurations required the use of a powerful vector computer, but today the 
same calculations would be trivial to perform. 15 years ago setup time would be 
considered to be trivial compare to the job run time, and thus no-one worried about 
program interfaces. Today I expect to be able to download a file containing an atomic 
configuration and have it running in a simulation within a very short period of time.
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In this introductory chapter I aim to set the scene for the range of applications 
discussed in the following chapters by outlining some of the key technologies now being 
used in computational materials and mineral sciences. I will begin by reviewing and 
comparing the relative benefits of the two most common approaches to modelling the 
interactions between atoms, namely using empirical representations and ab initio 
quantum mechanical methods. Both approaches can then be used in each of the four 
methods that are reviewed in subsequent sections, namely lattice energy modelling, 
calculations of lattice dynamics, the molecular dynamics simulation method, and the 
Monte Carlo simulation method (focussing on the Metropolis method). Throughout this 
review I cite a number of representative applications, and I follow the review of the 
methods with a small number of brief case studies. I conclude by enlarging the 
discussion to consider practical issues of running simulations on modern computing 
resources, and of the critical role of data management. 

 

2. Empirical models for forces between atoms 

2.1. Functions 

The use of empirical models for the interactions between atoms depends critically on 
there being a set of  simple equations that give a reasonable description of the 
dependence on interatomic separation or other details of local atomic coordination, and 
there being the possibility to tune the parameters in the equation. One model that has 
worked well for ionic materials is to use long-range Coulomb interactions with short-
range repulsive interactions of the form: 

)/exp()( ρrArE −=         (1) 

where r is the interatomic spacing, and A and ρ are parameters whose values are to be 
tuned against some data. This specific function was introduced by Born and Mayer as 
long ago as 1932 (Born and Mayer, 1932). This model has worked well for many 
minerals, as reviewed by Burnham (1990), and appears to have some justification when 
compared with the results of quantum mechanical calculations. However, there are cases 
where this is an over-simplification to an extent that renders it inappropriate. One 
example is where there are important angular forces such as might be expected for ions 
that favour certain atomic coordination. One example of the use of bond-bending terms 
is to model the tetrahedral SiO4 coordination found in many silicates, and the use of a 
simple harmonic function of bond angle (Sanders et al., 1984) often suffices:  

2
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where θ0 is the nominal equilibrium angle (90° for an octahedral coordination, 109.47° 
for a tetrahedral coordination). Other functions, such as more complicated distance-
dependent pair terms, or multi-atom terms, can be incorporated into a model, provided 
that there might be some physical or chemical justification. Terms that merely represent 
the first few terms in a Taylor expansion, such as the harmonic bond-bending term, are 
clearly justified because they are little more than a numerical approximation. Terms of 
the form –Cr–6 can be justified as representing the known dispersive interactions. A 
wide range of models has been developed, and are incorporated within most standard 
modelling codes: e.g. GULP (Gale, 1997; Gale and Role, 2003) and DL_POLY (Smith, 
2006; Todorov and Smith, 2004). 

The models outlined above assume that ions are rigid in the sense that they cannot be 
deformed (although clearly the models allow some degree of spatial overlap of the 
spatial extent of individual ions and do not treat ions as perfectly hard spheres). This 
means that the models do not allow for ionic polarisation in response to local electrical 
fields, whether static or dynamic. In turn, this means that such models are unable to be 
used to calculate the refractive index, and it follows that it will not be possible to obtain 
the correct differences between the frequencies of longitudinal and transverse optic 
phonons. The simplest solution to this problem is to introduce the shell model, in which 
the ion is represented by an inner charged core with the full mass of the ion, and an 
outer mass-less shell. The simplest version of the shell model has a harmonic force 
between the centres of the core and shell that opposes their separation, and does not 
allow for any deformation of either core or shell; this is illustrated in Figure 1. 

 

 

 

 

 

 
 
Figure 1. Representation of the shell model, showing the inner cores containing the whole of the 
ionic mass and the outer mass-less shells. The core and shell on any ion interact via a potential 
energy function that assume an equilibriation separation of zero. In simplest models this is a 
harmonic interaction, but it can be extended to higher powers of separation. Morever, the model 
can be extended to allow the shell to be deformable either in shape or radius. In most 
applications neighbouring atoms interact through short-range potentials that act on shells only 
(in addition to the Coulomb interactions). From Dove (2003). 
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2.2. Tuning empirical functions 

The existence of usable and appropriate functions is only part of the issue; a greater 
challenge is whether the parameters in the function can be tuned to appropriate values 
(Gale, 1996). The traditional approach, anticipating the use of methods to be described 
later, is to tune the parameters such that they lead to the prediction of the crystal 
structure that is in closest agreement with the experimental structure. Formally this 
procedure is carried out by adjusting the parameters in the model until all computed 
stresses on the crystal and forces on the atoms are as close to zero as is possible. This 
approach can suffer from the fact that frequently there are more parameters in the model 
than the number of independent structure variables; in the case of a simple cubic binary 
material such as MgO there is only one structural parameter. The paucity of data may be 
circumvented by keeping some of model parameters at fixed values, such as using 
formal charges and by only allowing one of the two parameters in the Born–Mayer term 
to be tuned. 

A more refined approach is to incorporate experimental data. For example, and again 
anticipating later discussion, it is possible to calculate physical properties such as 
dielectric and elastic constants, and vibrational frequencies. Thus not only can the model 
be tuned to minimise the stresses and forces, it can also be tuned to simultaneously give 
closest agreement with the experimental data. In fact this approach is essential when 
using shell and bond-bending models, because invariably these components of the 
model are often not probed in the details of the structure. 

In the approach I have outlined, the result might be a well-tuned model that is 
capable of reproducing a range of experimental data. However, there is one caveat that 
needs to be appreciated. By fitting against crystal structure and physical properties we 
have tuned the model so that it best represents the first and second differentials of the 
interatomic potential energy function at the positions of the interatomic distances. There 
is no guarantee that it gives a good estimate of real bond energies, nor that it will work 
well for different interatomic distances. 

Let us consider two examples. First, we might have a well-tuned model that 
reproduces the structure and properties of Al2MgO4 spinel. However, if we then 
calculate the energy change when swapping some of the Al and Mg cations, it is highly 
unlikely that the model will properly reproduce the energy associated with the change in 
coordination number of the two types of cation (Al is octahedrally coordinated in the 
spinel structure, and Mg is tetrahedrally coordinated) if there is any degree of covalent 
bonding in the crystal. Second, take the same example and perform a calculation under 
pressure. If the model correctly reproduces the elastic constants, there is a chance that 
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the low-pressure results will be reasonable. But once the bond lengths have changed 
appreciably, there is no guarantee at all that the model will match experiment because, 
quite simply, the model has not been tuned to reproduce the energy function for these 
new interatomic distances. The take-home message here is to not trust simulations using 
empirical models at pressures for which the models were not specifically tuned. 

An emerging approach to tackle this problem is to tune models against the 
predictions of quantum mechanical calculations (again, see below). Early approaches in 
this direction were to compute the interactions between pairs of ions as a function of 
separation and fit the resultant energy curve (Post and Burnham, 1986). A refinement on 
this was to compute the energy of a small cluster of atoms for different configurations, 
and fit the resultant energy surface (i.e. the energy as a function of many variables) 
(Tsuenyuki et al., 1988). The trend now is to obtain the quantum mechanical energy 
surface for many configurations of the crystal and use this as the primary source of data; 
this approach enables the use of many independent data values and thus facilitates the 
tuning of more complicated models for a wider range of interatomic separations. 
Furthermore, this approach also enables the models to incorporate bond energies 
directly, and would enable a reliable calculation of the energy changes due to swapping 
ions with different coordination number. 

 

2.3. Transferability 

One of the big areas of success for empirical modelling is organic materials, 
particularly with applications for pharmaceutics. The success relies on the observation 
that models for standard non-bonded atom pairs, such as C...C and C...H, and also for 
internal molecular distortions (such as flexing of C–C–C bonds) can be modelled using 
a set of standard functions without the need to retuned the model for each new 
application. Such a model is said to be “transferable”, and this feature underpinned the 
original growth of energy modelling. 

For modelling of aluminosilicates we are fortunate that we can also use transferable 
models (Dove, 1989; Winkler et al., 1991; Price et al., 1987), although it has to be 
admitted that less effort has gone into tuning transferable models for these systems than 
was given to the models for organic crystals. 

One model that is commonly used, at least in the UK materials/modelling modelling 
community, has its roots in an initial model for quartz, SiO2 (Sanders et al., 1984). This 
model used formal ionic charges, a shell model for oxygen anions, Born–Mayer 
repulsive interactions, dispersive Si...O and O...O interactions (although the term used 
for Si...O may not be doing much than accommodating residual errors in the overall 
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Si...O interaction), and an O–Si–O bond-bending term. It has been extended by 
including interactions for Al3+ in both tetrahedral and octahedral coordination (the same 
parameters appear to work well in both cases), and other cations can be incorporated 
using Born-Mayer short-range potentials (parameters can be taken from the Modified 
Electron Gas calculations of Post and Burnham, 1986). Furthermore, it has proven to be 
straightforward to incorporate hydrogen into these models (Price et al., 1987).  

The transferable model described here has been successfully used for a wide range of 
different systems (Dove, 1989; Winkler et al., 1991; Price et al., 1987), including rock-
forming minerals (Patel et al., 1991; Dove and Redfern, 1997), clays and other layer 
silicates (Palin et al., 2001; Sainz-Díaz et al., 2001), and zeolites (Ohsuna et al., 2004), 
with applications in mineralogy and materials chemistry. 

 

3. Quantum mechanical methods 

3.1. General notes 

Quantum mechanical methods hold out the possibility of performing simulations that 
can give reliable results without the prior need for tuning. In recent years the rapid 
growth of computer power coupled with recent methodological developments have 
transformed this area of simulation science from the domain of the specialist into the 
hands of a wider range of researchers. 

The challenge in developing quantum mechanical methods is that we are dealing 
with equations for which there is no solution. The wave function properly describes all 
electrons within a system, which for crystalline materials really means the primitive unit 
cell because of translational symmetry. However, the electrons interact with one 
another, and we cannot easily separate out equations for each electron. In fact it is 
possible to write the overall wave function as a product of single-electron wave 
functions (the Slater determinant) and then recast the underlying Schrödinger equation 
in terms of the component single-particle wave functions. In so doing, the theory 
generates new terms from the electron–electron interactions that are divided into the 
‘exchange term’ (the term generated within the Hartree–Fock approach) and the 
‘correlation term’ (everything else that is generated by this approach and not included 
within the exchange term). 

Different levels of theory handle the electron–electron terms in different ways and to 
different degrees of sophistication, but there are some common approaches regardless. 
One feature is the need to use trial functions for the wave functions – known as the 
“basis set” – rather than being able to derive analytical wave functions from scratch. For 
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methods that are focussed on the atoms, including quantum-chemical (molecular) 
methods, the basis sets are often designed to model atomic electron orbitals, but for 
methods designed to model crystalline materials the existence of translational symmetry 
is exploited through the use of plane waves as the basis set. The other common approach 
is to treat the nuclei as classical objects whose role is to generate electric fields that have 
the same status as an external field; the electrons move within the electric field of the 
nuclei, but no wave function is assigned to the nuclei. This is known as the “Born–
Oppenheimer approximation”. 

 

3.2. Density Functional Theory and modern applications 

Most solid-state applications are now making heavy use of Density Functional 
Theory (DFT) (Payne et al., 1992; Segall et al., 2002). In this approach, the primary 
equations are cast in terms of the electron density rather than on the wave functions. 
However, although the theory is well-developed, it remains the case that for certain 
components (particularly the exchange and correlation terms) exact functionals are not 
available. Thus approximations are required. One common approach is to use numerical 
approximations to the exchange–correlation energy taken from simulations of a gas of 
electrons. The “Local Density Approximation” (LDA) assumes that the exchange–
correlation energy for a point in the crystal can be replaced by the corresponding energy 
for a gas of electrons with the same electron density as at that point. A more 
sophisticated approach is to take account of the local gradient in the electron density – 
the so-called “Generalised Gradient Approximation” – but this approach tends to over-
compensate for errors in the LDA. 

DFT has been used for a wide range of atomic basis sets. The early major DFT codes 
for periodic systems, including CASTEP (Segall et al., 2002), VASP1 (Vienna ab-initio 
simulation Package, 2007), ABINIT (Gonze et al., 2002) and WIEN2k (Schwarz and 
Blaha, 2003), use plane wave representations of the electrons (see below for comments 
on the approach taken by codes such as WIEN in this regard). Plane waves are actually 
very good for basis sets because they have a high degree of flexibility, provided that 
sufficient numbers of waves are used to model fine details in the variation of the 
electron density. However, plane-wave methods do not scale very well with system size, 
typically scaling between N 2 and N 3, where N is the number of atoms. In the quest for a 
method that scales linearly with N, the emphasis is on using point-centred atomic 
orbitals. The SIESTA code, for example, uses numerical atomic orbitals as the basis sets 
(Soler, et al., 2002). This approach enables simulations of larger sample size than is 
                                                 
1

 Vienna ab initio simulation package (2007). http://cms.mpi.univie.ac.at/vasp. 
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possible using plane waves, but the cost is that results will be constrained by the 
flexibility of the basis set. 

One challenge is how to model the electrons near the centres of the atoms. In this 
region of space, the wave functions change rapidly with distance from the atomic centre, 
and such a variation can be very hard to model. The so-called all-electron codes such as 
WIEN2k (Schwarz and Blaha, 2003) switch from plane waves to the use of atomic 
orbitals within a defined volume encompassing the atom centres. But many DFT codes 
make the approximation of replacing the inner electrons by an effective potential seen 
by the valence electrons, the so-called “pseuopotential approximation”. The key 
advantage of this approach is computational speed. 

 

4. Lattice energy calculations 

4.1. Fundamental idea 

We now turn to discussing the tools that are used to provide the interface between 
models (whether empirical or quantum mechanical) and scientific applications. The first 
of these is lattice energy modelling. In this tool, the lattice parameters and atomic 
coordinates are systematically adjusted until the energy (computed either from an 
empirical or quantum mechanical model) is minimised (i.e. to that there are no residual 
stresses or forces). Typically the process involves a non-linear regression approach. The 
approach can easily be extended to incorporate pressure; in this case the quantity to be 
minimised is the lattice enthalpy. 

The primary outputs of a lattice energy minimisation are the crystal structure and 
associated energy. One example where this approach can provide new information is 
when the energies of different phases are to be compared; although neither empirical nor 
quantum mechanical models will give useful absolute values of energy, calculations on 
related structures will give reliable energy differences. Thus these models might be used 
to predict phase stability at different pressures. Moreover, the evolution of the structure 
under pressure can be investigated, and the results might provide some rationalisation of 
the predicted phase stability. 

We remark here that a good model should be capable of calculating lattice 
parameters and interatomic distances to within 2% of the experimental values, with the 
anticipation that one should usually achieve better than this. In empirical modelling the 
residual errors typically come from using over-simplified models, and the fact that any 
attempt to improve the accuracy in the computed structure will inevitably come at the 
expense of the accuracy of computing other properties. In quantum mechanical 
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modelling, residual errors reflect the limitations of approximations used in the model. 
For example, it is generally found that the computed interatomic distance within the 
GGA are larger than experimental values, but the LDA tends to give shorted computed 
distances. 

Energies per se may not be immediately useful in many cases, but one example of an 
application for which this approach has been successfully used is in the study the 
energetics of cation ordering (Palin et al., 2001; Bosenick et al., 2001). Such studies 
involve calculating the relaxed energies of many configurations with different cation 
distributions, typically resulting in the tuning of a model Hamiltonian for use in Monte 
Carlo models (as described below). 

 

4.2. Long-range electrostatic interactions 

The short-range contributions to the lattice energy are easy to evaluate. Starting from 
each atom in the unit cell, the interaction between that atom and all other atoms lying 
within a sphere of a pre-defined radius are calculated. With the speed of modern 
computers, this radius can be selected such that all short-range interactions have 
effectively fallen to zero at this value. Here we note that one of the technical issues is 
the fact that the sum of the electrostatic interactions, and also dispersive interactions, 
cannot be accurately summed this way. Instead it is necessary to sum to infinite atomic 
separation, which is clearly impossible to achieve. The common approach is to use a 
summation technique developed by Ewald, in which the summation is separated into 
two parts, one in real space and one in reciprocal space, which are both converge 
reasonably quickly. The Ewald sum was originally developed for the Coulomb 
interaction, but it can be generalised to include any function that varies as r–n, with n = 6 
as the most common example. Although most simulation scientists know this, it is one 
of the major technical issues that the novice needs to quickly appreciate. The Ewald sum 
was originally developed for three-dimensional crystals, but it has been generalised for 
one (Bródka, 2002) and two (Harris, 1998) dimensions (e.g. for studying line defects or 
surfaces). 

 

4.3. Computation of properties 

One common application of lattice energy modelling is to calculate physical 
properties. In simulations using empirical models, the energy expression can be 
extended to include the contribution due to external elastic stresses and electric fields, 
taking account of the coupling to relaxation of internal structural coordinates and strains. 
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From this expression it is possible to derive equations for dielectric constants (both 
static and high frequency, with the latter yielding the refractive index tensor), 
piezoelectric tensors, and elastic constant tensor.  

Typically it is not common to achieve the same level of accuracy as is attainable for 
structures. Errors of order 10–20% are not uncommon for the best models without 
expending a lot of effort, and not surprisingly accuracy can be worse for small off-
diagonal tensor components. 

It is anticipated that quantum mechanical methods might give better results for 
physical properties. However, this is offset by the fact that the level of theory to obtain 
physical properties from quantum mechanical calculations is much harder. Properties 
such as elastic constants (Baroni et al., 1987a) and dielectric constants (Baroni et al., 
1987b) can be computed using a perturbation theory approach (“linear response” 
method), but actually elastic constants are more commonly computed by applying a set 
of strains and fitting the elastic constant values to the computed energies. 

 

4.4. Calculations of defect energies 

Using empirical models it is possible to calculate the energies of defects using the 
Mott-Littleton method (Catlow, 2000). In this method, the structure contained within a 
sphere surrounding the defect is relaxed, and the structure on the surface of the sphere is 
connected with the infinite crystal through the use of an interface region. There have 
been many studies of different types of defects in minerals and ceramics using this 
approach (e.g. Wright et al., 1994; Walker et al., 2003).  

 

4.5. Studies of surfaces 

Lattice energy models have found widespread use for simulations of surfaces, 
particularly for the study of adsorption of ions and molecules onto surfaces. Some codes 
– e.g. GULP (Gale and Rohl, 2003) – use a two-dimensional version of the Mott-
Littleton algorithm, but with quantum mechanical approaches it is more common to use 
two-dimensional slabs of the structure separated by a vacuum which allows the 
calculation to be performed using a standard three-dimensional modelling code. These 
calculations are invariably considerably more demanding than standard crystalline 
calculations, and carry the risk that any minimum energy state is not the global 
minimum. 
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5. Lattice dynamics calculations 

5.1. Introduction to the theory 

The theory of lattice dynamics (Dove, 1993) relies on the ability to expand the 
crystal energy in terms of small atomic displacements to quadratic order. Restricting 
ourselves here to using one-dimensional atomic displacements in order to make 
nomenclature more transparent, the energy for a crystal is written as: 

 

        (3) 

 

where i,j label the atoms within the unit cell, and l,l′ label different unit cells. This 
equation is easily generalised to three-dimensions, albeit at the cost of additional book-
keeping, to three dimensions.  

The vibrations themselves are described in terms of orthogonal linear combinations 
of atomic motions, namely the normal modes. When the above equation is recast in 
terms of the normal modes, it is found that the equations yield a matrix – the “dynamical 
matrix” – that can be constructed in terms of interatomic force constants and phase 
factors and which can be diagonalised to give the squares of the angular frequencies of 
all vibrations for any given wave vector. 

We write the atomic displacement in terms of normal mode coordinates Qk and mode 
eigenvectors e written as vector allowing for three-dimensional atomic displacements 
within this one-dimensional system: 

 
      (4) 

 
where we use the shorthand k to denote both the wave vector k and the phonon branch 
number (and –k denotes the complex conjugate, namely the same mode at wave vector –
k). Substitution yields the following equation for the energy: 
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       (6) 

 

This is an eigenvalue/eigenvector problem, in which the dynamical matrix can be 
diagonalised to yield: 

E =
1
2

ωk
2QkQ−k

k
∑         (7) 

where ωk is the angular frequency of the normal mode. The task is to compute the 
elements of the dynamical matrix from the calculation of the dynamical matrix. 
Expansion to three dimensions is straightforward, but with messy notation. 

 

5.2. Practical calculations 

The dynamical matrix lends itself naturally to simulations using empirical 
calculations, where the second derivatives are easily computed. Practically it is not 
costly to perform a set of calculations for a range of wave vectors. In the early days of 
lattice dynamics modelling – in the 1960’s–80’s, following the development of inelastic 
neutron scattering methods for the measurement of phonon dispersion curves – the 
dynamical matrix was set up using individual and independent force constants. 
Nowadays it is more typical to calculate the values of the force constants from the 
empirical energy functions. In this approach, it is essential that the calculated is 
performed on the structure after it has been relaxed (see previous section), and as a 
result codes such as GULP (Gale, 1997; Gale and Rohl, 2003) integrate lattice energy 
and lattice dynamics calculations. We remark that for models that are not specifically 
tuned against vibrational data it is possible to achieve accuracy of around 20% or better 
on calculated frequencies. 

The situation is not so straightforward for quantum mechanical calculations, because 
the derivatives within the dynamical matrix are not easy to form. These calculations do 
not contain the equivalent of an interaction between two atoms that makes setting up the 
dynamical matrix so easy for empirical models. There have been a number of attempts 
to compute the derivatives numerically by using large samples and computing the 
energy for finite displacements of pairs of atoms (Ackland et al., 1997). However, the 
emerging technique is to use linear response methods (Baroni et al., 1987b), recognising 
that these are both theoretically complex and computationally demanding. On the other 
hand, this approach is capable of high accuracy for a wide range of systems, certainly 

( )∑ ⋅Φ=
l

ll )](–)0([exp)0(1)( jiij
ji

ij i
mm

D rrkk



An introduction to atomistic simulation methods 19

better than possible for most empirical models. It is possible to achieve accuracy on 
computed frequency of a few percent. 

 

5.3. Lattice dynamics and thermodynamic functions 

One important application for lattice dynamics models is the computation of 
thermodynamic properties. For example, the free energy is given as: 

 

    (8) 

 

 

where in practice the sum is over a grid of wave vectors. 

Lattice dynamics modelling may be used to compute thermodynamic properties, such 
as the specific heat, for a range of temperatures and pressures. In fact some of these 
functions are actually rather insensitive to the accuracy of the calculated frequencies, 
and it is not hard to obtain agreement with experiment to within 2%. A further 
application is to use calculations of free energies to compute phase stability and phase 
diagrams. The pioneering study in this regard was the computation of the Mg2SiO4 
phase diagram using empirical models (Price et al., 1987), with the discrepancies with 
experiment being due to small errors in the relative computed enthalpies of different 
phases (see comments about the performance of empirical models under pressure 
above). On the other hand, the slopes of phase boundaries were computed reasonably 
accurately, leading us to expect that when using this approach with quantum mechanical 
methods we might expect to be able to make useful predictions. 

 

5.4. The quasiharmonic approximation and thermal expansion 

The theory discussed so far uses the harmonic approximation, one limitation of 
which is that it does not allow for thermal expansion. To overcome this, it is common to 
use what is known as the “quasiharmonic approximation”, in which the harmonic 
approximation is retained but with force constants that will vary with volume. If we start 
from the equilibrium structure at zero pressure, and increase the volume, the energy will 
increase but the majority of vibrational frequencies will decrease. If we then compute 
the free energy, we will find that the increase in energy is offset by an increase in the 
entropy with a subsequent contribution of –TS to the free energy. Thus there will be a 
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temperature at which this new volume corresponds to the minimum of the overall free 
energy. It is straightforward to see how this approach can be used to simulate thermal 
expansion (Allan et al., 2001). 

 

6. Molecular dynamics methods 

6.1. Essential details of the method 

The previous discussion has pointed out the need to incorporate temperature and 
anhamonic terms into the simulation of materials, and the best approach that takes this 
further is the molecular dynamics (MD) method (Allen and Tildesley, 1988; Rapaport, 
2004). The MD method is simple in concept: the idea is to exploit the fact that Newton’s 
equation of motion links forces to acceleration. We start with a large configuration of 
atoms, and use either empirical or quantum mechanical methods to compute the force on 
each atom. This force is converted to acceleration, and using a numerical time step 
algorithm the acceleration can be combined with information on the current and 
previous atomic positions, velocities and/or accelerations to predict the position of each 
atom a small time interval (time step) later. There are actually several algorithms in 
common use, giving the level of stability and accuracy required by the specific 
application. The result of a simulation is the evolution of the positions and velocities of 
an ensemble of atoms through time, and using the approach discussed here this 
ensemble will have a constant energy and volume (i.e. the microcanonical ensemble). It 
is possible to extend the set of equations to include additional dynamical variables that 
enable the simulations to correspond to constant temperature (variable energy) and 
constant pressure/stress (variable sample volume and shape). 

The idea outlined above is very simple, but is remarkably powerful. Typically time 
steps correspond to around 1/20th of the smallest natural period of vibration (whether of 
a high-frequency bond-stretching vibration or the oscillation of the shell model), and it 
is common to run simulations for time of 5 ps (in the case of large quantum mechanical 
simulations) up to several 100 ps (with empirical models). In fact there are good reasons 
why to simulate much longer leads to diminishing returns (see below). With quantum 
mechanical simulations sample sizes of around a few 100 atoms are as much as is 
feasible for most researchers; the limiting factor is that computational requirements 
often scale as between the second and third power of the number of atoms. Using 
modern algorithms that scale linearly with the number of atoms, and by using large 
multi-processor computers with low-latency inter-processor communications, it is 
possible to run simulations containing a few million atoms with empirical models. 
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6.2. Some technical details 

The key technical point that now needs to be discussed concerns how one handles the 
boundaries of the sample. In lattice energy and lattice dynamics models, we embed the 
unit cell within an infinite crystal of identical unit cells without giving it much thought. 
When we extend the method to simulate larger-scale processes, such as the adsorption of 
molecules on mineral surfaces, we simply define a large unit cell. In the MD method we 
commonly use the same approach, which is now said to be using “periodic boundary 
conditions”. The periodic boundary construction is illustrated in Figure 2. It means that 
the simulation does not have any free surfaces and thus more accurately resembles a true 
bulk material. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2. Representation of periodic boundary conditions, showing both one and three-
dimensional representations. The building blocks are typically unit cells. 

 
Although the use of periodic boundary conditions solves the problems that would be 

created if our models had free surfaces, they do introduce some specific artefacts. One is 
that a travelling disturbance will propagate though one surface and reappear through the 
opposite surface. After a time related to the ratio of the sample length and the velocity of 
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sound the disturbance will reappear at the same point, giving the possibility of a 
feedback mechanism. As a result, any phenomena that lasts for time longer than this 
“recurrence time” will be hard to quantify in a way that is free from the effects of this 
artefact. Another consequence of using finite-sized samples is that the number of wave 
vectors contributing to the overall behaviour is limited. This course-grained sampling of 
wave vector space can cause some of the amplitudes of fluctuations to be dependent on 
sample size, typically giving lower values for smaller samples. 

 

6.3. What can you calculate with the MD method? 

In short, barring constraints of statistical accuracy and sensitivity, and of finite 
sample size and running time, one can compute many things that can be measured 
experimentally and more beside. To discuss this we consider a number of different types 
of standard analysis. 

First we have the evolution of the system with temperature and pressure in the case 
of equilibrium phenomena, and the evolution of the system with time in the case where 
the sample is reacting to a specific disturbance. For example, it is straightforward to 
compute the equation of state for a range of temperatures and pressure; an example is 
our recent work on understanding the compressibility of amorphous silica (section 8.3). 
Similarly it is possible to study phase transitions using this approach; Figure 3 gives an 
example, showing the lattice parameters of rhombohedral BaCO3 on heating though one 
disordering phase transition and then through a phase transition into a cubic disordered 
rocksalt structure. In the case of the time evolution of a sample, we cite work on 
studying the response of minerals and ceramics to the high-energy impact of an atom 
that has undergone radioactive decay (see section 8.2). 

Second it is possible to compute distribution functions, such as the distribution of 
orientations of molecules or of the positions of atoms. A common example is the pair 
distribution function, which is particularly useful to understand atomic coordination in 
fluids. 

Third is the analysis of dynamics, frequently through the use of time-correlation 
functions. In simulations of fluids or highly-dynamic systems, it is possible to calculate 
diffusion constants from analysis of single atom motions. In simulations of solids, 
studies of fluctuations through time-correlation functions will give detailed information 
on the time scales for dynamic processes. In this regard we note that the Fourier 
transform of the single-particle velocity autocorrelation function for a crystalline 
material yields the phonon density of states. Recent developments have led to methods 
to compute properties such as the thermal conductivity (Archer et al., 2003). 
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Figure 3. Temperature dependence of the lattice parameters of BaCO3 obtained by molecular 
dynamics simulations using a rigid-ion empirical model with the the interatomic potentials of 
reference 41. The starting structure at low-temperature is the cubic R 3 c structure of calcite, and 
the final structure at high-temperature is the cubic rocksalt structure. The lower set of data (open 
circles) correspond to the c lattice parameter in the trigonal setting scaled to the value in the 
cubic phase, and the upper set of data (closed circles) correspond to the a and b lattice 
parameters in the trigonal setting similarly scaled to their values in the cubic (data are 
unpublished at the time of writing). 

6.4. Thermodynamic integration 

There has been a lot of recent interest in using molecular dynamics methods to provide 
quantitative information on phase stability under extreme conditions, one key example 
being recent work on the solid–fluid phase diagram of iron (Guillan, 2006). The task 
revolves around the need to be able to compute the free energy at any temperature or 
pressure. One important approach is “thermodynamic integration”. In this method, a 
direct comparison is made with a similar model for which the free energy is known 
exactly. We define the Hamiltonian of the system we are interested in as H, and the 
Hamiltonian of the reference state as H0, and we define a mixed Hamiltonian as Hλ = λH 
– (1 – λ)H0. The procedure is to run a series of simulations for a range of Hamiltonians 
Hλ. The free energy of the system of interest is then obtained as: 
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where F0 is the known free energy of the reference stated defined by H0, and Fλ is the 
free energy associated with the Hamiltonian Hλ. It can be shown that the differential can 
be obtained from the relation: 

 

∂Fλ
∂λ

= ΔH λ          (10) 

 
where the right hand side equal the expectation value of as H – H0 evaluated for 
configurations generated by the Hamiltonian Hλ. 

Clearly the route to obtaining the free energy at a single state point involves a large 
number of separate simulations, but computing resources to match this task are now 
available. 

 

6.5. Methods for non-equilibrium and rare events 

We conclude this survey of the MD method by noting that there is growing interest 
in using variants of the MD method for simulations of events such as transition states 
that involve thermally-activated crossing of high potential energy barriers. In order to 
study such events, it is essential to vastly accelerate their rate. A number of methods 
exist for this, including “temperature accelerated dynamics” (Voter et al., 2002) and 
“metadynamics” (Laio and Parrrinelo, 2002) approaches. 

 

7. Metropolis Monte Carlo methods 

7.1. Basics of the Monte Carlo method 

The Monte Carlo (MC) method is a technique to sample the infinite number of 
available configurations of a material (Binder and Heermann, 2002). In principle the 
MD method is one route to obtaining such a sample, but there are cases where the MD 
method is not sufficiently efficient, particularly when sampling configurations that can 
only evolve dynamically at an extremely slow rate. An example is the study of cation 
site ordering. 

The Metropolis implementation of the MC method, the one that is common use in 
computational science, requires an algorithm for generating a new configuration by 
changing a previous configuration. Any change in the configuration or atomic ensemble 
will give a change in energy. If the energy change ΔE is negative, leading to a lowering 
of the energy, the change is automatically accepted. On the other hand, if the energy 
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change is positive, the configuration is only accepted with probability exp(-ΔE/kBT). 
This procedure is repeated for a large number of steps, leading to an evolution of the 
ensemble through the multi-dimensional phase space. This approach ensures that the 
sampling procedure is consistent with thermodynamics; for example, states with any 
energy E occur with the relative probability exp(E/kBT). The complete set of 
configurations, including duplicated configurations, can be analysed to give averaged 
quantities that have the correct thermodynamic weighting automatically ensured. For 
example, it is possible to calculate the average energy as a function of temperature, and 
the variance of the energy will yield the heat capacity using the standard formulation 
based on fluctuations. 

Briefly we mention two types of study that might be conducted using MC methods. 
The first is where each MC step consists of a small displacement of one of the atoms 
within the simulation, and the energy change is computed using either empirical or 
quantum mechanical methods. This is similar to the sort of approach used in the MD 
method, but is providing an alternative way to sample the phase space defined by atomic 
positions, but will not provide information on dynamics. It can be more efficient that 
MD in obtaining a good sample. The second type of study is when using different types 
of variable and a model Hamiltonian. The common example is a spin model, where each 
site has a variable that can be mapped onto a vector with the interactions between 
neighbours being described by a model Hamiltonian. The problem of atomic site 
ordering, where each MC step consists of swapping the sites occupied by two atoms 
chosen at random, is an example of a system that can be mapped onto a spin model. 

 

7.2. Example of cation ordering 

The basic ideas are most easily amplified with reference to an example, and we 
consider here the case study of the ordering of two types of cation in a clay silicate layer 
(Warren et al., 2001; Sainz-Díaz et al., 2003). We define a model Hamiltonian in which 
pairs of sites, labelled by n, have energy Jn if they are occupied by the same cation and –
Jn if they are occupied by different cations. Figure 4 shows the temperature-dependence 
of various quantities that have been calculated using the MC model; the two points to 
make here are that these are representative data of the sort of task for which the MC 
method is good at obtaining, and that the MC method lends itself to comprehensive 
sweeps through parameter space (in this case temperature) in order to give a detailed 
picture of the behaviour being studied. 
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7.3. Some technical points for discussion 

One of the points highlighted by Figure 4 is that the results from an MC run are 
subject to some degree of statistical error. Indeed, the MC method is a statistical 
sampling through a multi-dimensional phase space, and thus it is essential that MC 
simulations run for enough steps to minimise the effects of statistical errors on the 
detailed analysis. A second point highlighted by Figure 4 is the rounding of the results 
around the transition temperature; this Is due to the finite size of the sample, and with 
the type of detail that MC methods can give it is important to minimise these effects 
using samples that are as large as possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Temperature dependence of the order parameter (top) and inverse susceptibity 
(bottom) computed for a set of Mg and Al cations within an octahedral layer in a model 
mica/clay structure (Sainz-Díaz et al., 2003). The simulation method was the Monte Carlo 
method, using a model spin Hamiltonian with interactions taken to fifth neighbour. 
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8. Case studies 

Here I cite a few illustrative examples from my own work to highlight a number of 
issues; representative examples from other studies have been cited above, and are given 
in the other contributions to this volume. 

 

8.1. Study of pollutant molecules on mineral surfaces 

We are engaged in a detailed study of the energetics of adsorption of pollutant 
molecules on mineral surfaces, an example being dioxin (C10O2ClxH8–x) molecules on 
clay surfaces (Austen et al., 2008), as illustrated in Figure 5. Our tools for this work 
include a combination of DFT and empirical models, using both lattice energy and MD 
methods. The scientific challenge is to understand the factors associated with 
adsorption, and one key finding from a sweep across all molecules (congeners) within 
this family of molecules is that the most important factor is the number of Cl atoms. 
Less important are the factors of where they are in the molecule and the specific location 
or orientation of the molecule. Adsorption energies of less than 1 eV per molecule have 
been identified, and the similar results have been found for adsorption on silica and 
carbonate minerals. The simulation challenge for the empirical modelling is that it is not 
easy to parameterise all the interactions in this study, and for the DFT work is the fact 
that the DFT approach does not explicitly take account of dispersive interactions (which 
may be important for physisorption processes) and the simulations require a large 
number of atoms. Linear-scaling DFT codes such as SIESTA are required for such large 
systems. 

 
Figure 5. Dioxin molecule on a clay surface, an example of the type of environmental simulation 
now amenable to molecular simulation using both empirical and ab initio models (Austen et al., 
2008). 
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8.2. Radiation damage in ceramics 

Long-term storage of high-level nuclear waste products, such as plutonium, may 
require encapsulation within ceramic matrices. We have been running large simulations 
of high-energy (some tens of keV) recoils of heavy atoms with crystalline ceramics such 
as zircon (Geisler et al., 2003) and perovskite (Trachenko et al., 2005). For this work we 
require MD studies using millions of atoms. The MD code DL_POLY_3 (Todorov and 
Sminth, 2004) has been specifically optimised for this work. Figure 6 shows an example 
of the damage caused by a single recoil event in a simulation. It is clear that large 
samples are required to contain the extent of the damage, and even larger samples for 
the study of the aggregation of recoil damage due to several events. Animations show 
the time evolution of the damage process. These simulations require several hours 
running over 512 or 1024 processors on a national supercomputing facility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Part of an atomic configuration of zircon, ZrSiO4, that has been damaged following a 
high-energy recoil of a heavy atom(Geisler et al., 2003). This structure is now frozen into the 
structure following a quasi-melting of the structure around the trajectory of the recoil atom. 
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8.3. Compressibility of amorphous silica 

Amorphous silica has the strange property that its compressibility has a maximum at 
a pressure of 2 GPa. The headline restatement of this fact is that it initially becomes 
softer under increasing pressure before beginning to harden again. We have run a set of 
MD studies using empirical models parameterised by quantum mechanical calculations, 
running these as a set of parameter sweeps through pressure for different configurations 
and two potential models (Walker et al., 2007). Results for the pressure-dependence of 
volume are shown in Figure 7, which show a consistent maximum in the gradient –
dV/dP at a pressure above zero. To understand the behaviour, the results were analysed 
in terms of the inherent flexibility of the glass network, showing a strong correlation 
between compressibility and flexibility. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Simulated volume of amorphous silica, SiO2, obtained using the molecular dynamics 
simulation method using two interatomic potential models and 3 different atomic configurations 
(Walker et al., 2007). The key point to note is that there is a maximum in the slopes of the curves 
at around 2 GPa. 

 

9. Computing and data issues 

9.1. New computing paradigms 

The discussion presented above has focussed on the algorithms and scientific 
motivation. In this section I address wider practical computing issues. As noted in the 
introduction, the past 1–2 decades have seen enormous changes in the capabilities of 
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computers. Even the simplest of calculations would once require some waiting time on a 
standard workstation, and MD and MC methods required high-performance computing. 
Both raw computing power and processor memory would not be available on the 
desktop. Ab initio methods would necessarily be the preserve of specialised computing 
resources. This situation has changed dramatically. For example, the capability of my 
laptop computer far exceeds what once was used by the US Department of Commerce2 
as the definition of a supercomputer, so defined to control exports to unfriendly nations. 
It is now quite possible to run large-scale computations on low-cost computing 
resources. 

Over the past few years we have seen the emergence of two complementary type of 
computing resource that can give large amounts of computing power. One is the 
traditional “high-performance” resource, which typically consists of thousands of 
processors with high-speed and low-latency communication links between individual 
processors. Programs that exploit this type of resource need to be able to farm out parts 
of the overall task to separate processors to be carried out in parallel with other parts, 
and procedures are required to facilitate data transfer and orchestration of the various 
tasks. Some types of simulation, particularly large-scale MC methods, work particularly 
well with this type of architecture, facilitating the sort of large scale simulation 
illustrated by the work on radiation damage. Unfortunately not all methods are amenable 
to algorithms that scale well across hundreds or thousands of processors, and many ab 
initio codes fall into this class. Such cases tend to work well up to a few tens of 
processors, exploiting both the increased number of processors and available memory, 
but beyond a certain limit adding more processors does not yield a significant reduction 
in the time required to complete a simulation. The other type of computing resource is 
what is known as “high-throughput” computing. In this case large numbers of 
processors are used, with each processor being assigned an independent task. There is 
no need for fast communications between processors because individual processors do 
not share data. Whereas in high-performance applications one task is shared over many 
processors – this is called parallel processing – in high-throughput applications it is the 
actual study that is parallelised, not the individual tasks. Thus in the MC example shown 
in Figure 4, each processor in the high-throughput resource ran one or more separate 
simulations at given temperatures. There are two types of high-throughput resources in 
common use. One is a purpose-built cluster of processors – typically a rack of 
processors – and the other is a grid of desktop computers that is managed using 
middleware tools such as Condor (Thain et al., 2003). It should be noted that the 

                                                 
2 US Department Of Commerce, Bureau of Export Administration. US federal document 94-4156. 
http://www.fas.org/spp/starwars/offdocs/940224.htm, 1994 (URL active November 2007) 
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boundaries between the two types of resource can be blurred. The emerging computing 
paradigm is for multi-core processors, so that we will soon all have parallel computers 
on our desks as the norm, and people will run clusters or grids of small multi-processors 
machines. Whilst these can be run as separate processors, we will also run small parallel 
computations in high-throughput mode. This will be a particular boon to many ab initio 
studies. 

 

9.2. Data and information management 

With the rapid expansion of computing power comes a new problem, namely how to 
manage the deluge of data that will follow. Scientists will not merely do bigger and 
better calculations: they will also be empowered to run very detailed multi-dimensional 
parameter sweeps involving many thousands (or more) individual simulations as part of 
a single study. Thus we have to face the challenge of enabling simulation scientists to 
manage both their data and the information content of their data with accuracy and 
reliability. Up to now most scientists who are beginning to exploit the power of 
computing to run large-scale parameter sweeps are using bespoke data management 
methods, but these run the risk of being inaccurate (how do you know that any extracted 
number corresponds to the run you think it does?) and make it hard for anyone else to 
find their way through the data. 

We cite here work we have been carrying out on data management as part of our 
work on grid computing for simulation scientists. Basically there are three parts to this. 
First is the need to be able to manage data within a write-infrequently read-often 
(WIFRO) system with an organisation of the data being controlled by the job 
submission tools (Dove et al., 2007). The traditional practice of scientists incorporating 
their data within their normal file system is not going to cope with the amounts of data 
we can now generate, both because the data structures are not properly defined, and 
because the data are easily corrupted. For example, many of us too easily switch 
between test and production mode, without the file system properly reflecting this 
switch. In short, it is too easy to not organise data management with long-term data 
curation in mind, and a scientist’s normal desktop file system is not the ideal location for 
data curation. There are now data curation and data grid solutions appearing in routine 
use. For example, the Storage Resource Broker (Rajasekar et al., 2003) is an early 
example of such a system. The important challenge is to make data curation an integral 
part of the job submission and data analysis process, and not a task that is carried out 
post-analysis. Tools that handle this process include RMCS (Dove et al., 2007) and the 
Application Hosting Environment (Coveney et al., 2006). 
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The second piece of work on data management reflects the need to have machine-
readable representation of the data. We have found that XML is particularly useful for 
this, and the Chemical Markup Language (CML) is one XML language that has been 
designed with the needs of our community in mind (White et al., 2006a). Briefly, XML 
files have each piece of data marked with tags to make the meaning of the data clear 
defined. For example, the energy computed by a simulation can be marked up as 
<property dictRef="ossia:Energy" title="Energy"> 
  <scalar dataType="fpx:real" units="cmlUnits:eV">7.22e0</scalar> 
</property> 

In this example, energy is classified as a property. It is given a title, and associated 
with an entry in an XML dictionary specific for the simulation code (OSSIA) that 
defines the meaning of the variable (“energy” is a particular example of a term that can 
take on many shades of meaning). The actual number is specified as being of scalar data 
type real floating point number, and the units are specified in a separate XML units 
dictionary. 

XML/CML writing is now possible from simulation codes, and examples such as 
GULP (Gale and Rohl, 2003), DL_POLY_3 (Todorov and Smith, 2004), CASTEP 
(Segal et al., 2002), SIESTA (Soler et al., 2002) and OSSIA (Warren et al., 2001) now 
write CML output files. One advantage of using XML is that it is easy to transform 
XML files to formats that highlight the information content of data are which are easy 
for non-experts to read (White et al., 2006b). XHTML is one such useful format, with 
tables of data being transformed to graphs on-the-fly (e.g. using the Scalar Vector 
Graphics, SVG3, format, another XML language tailored for graphics) or atomic 
configurations rendered within the browser for easy viewing (eg using the Java JMOL 
program4). Another advantage of XML is that tools exist to automatically extract key 
information from files in useful formats. We note that a number of mainstream 
simulation and codes have very poor textual data representation, requiring the user to 
know in detail what the output means, often by reference back to separate input files. 

The third piece of work on data management concerns the use of metadata, which is 
basically defined as “data about data”. The former ideal was that all data were 
documented in a laboratory notebook, but this is highly impractical with the huge 
quantities of data that can be generated. Each data file (or set of files) must now be 
accompanied with a set of metadata that includes information on the details of the job 
(e.g. when and where run, and by whom), of the code, of the input parameters, of the 

                                                 
3 Scalable Vector Graphics (SVG): XML Graphics for the Web. http://www.w3.org/Graphics/SVG/ (URL active 
November 2007) 
4

 Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ (URL active November 2007) 
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core output values, and of the context of the job. A good set of metadata allows data 
files to be unambiguously identified, and is essential for any search tool. Moreover, by 
extracting a rich set of metadata that includes both input parameters and core output data 
values such as final or average values, metadata can provide an easy interface to data 
(Tyer et al., 2007). 

 

9.3. Integration of job and data management 

I remarked above that data management needs to be integrated into the job 
submission process. Briefly I note here that our RMCS tool for job submission includes 
the creation of a data archive, the upload of output files to the data archive, and the 
creation and storage of a rich set of metadata associated with each job (Dove et al, 
2007). Additional tools can make the creation and submission of hundreds of RMCS 
jobs as part of a parameter sweep easy, and metadata tools can make the collation of 
tables of output data simple. For example, the data shown in Figures 2 and 3 were 
obtained using two simple shell commands to set up and submit all the jobs represented 
in the data (one point per job), and a third command was used to collate the data for 
plotting. The automation of the job submission and data management tasks now releases 
the time of the scientist for doing science. 
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